\(\int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx\) [101]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [A] (verified)
   Fricas [B] (verification not implemented)
   Sympy [F]
   Maxima [A] (verification not implemented)
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 25, antiderivative size = 66 \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f} \]

[Out]

arctanh(b^(1/2)*tan(f*x+e)/(a+b*tan(f*x+e)^2)^(1/2))*b^(1/2)/f-cot(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)/f

Rubi [A] (verified)

Time = 0.10 (sec) , antiderivative size = 66, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.160, Rules used = {3744, 283, 223, 212} \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f} \]

[In]

Int[Csc[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

(Sqrt[b]*ArcTanh[(Sqrt[b]*Tan[e + f*x])/Sqrt[a + b*Tan[e + f*x]^2]])/f - (Cot[e + f*x]*Sqrt[a + b*Tan[e + f*x]
^2])/f

Rule 212

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))*ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 223

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 283

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c*x)^(m + 1)*((a + b*x^n)^p/(c*(m + 1
))), x] - Dist[b*n*(p/(c^n*(m + 1))), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 3744

Int[sin[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*((c_.)*tan[(e_.) + (f_.)*(x_)])^(n_))^(p_.), x_Symbol] :> With[
{ff = FreeFactors[Tan[e + f*x], x]}, Dist[c*(ff^(m + 1)/f), Subst[Int[x^m*((a + b*(ff*x)^n)^p/(c^2 + ff^2*x^2)
^(m/2 + 1)), x], x, c*(Tan[e + f*x]/ff)], x]] /; FreeQ[{a, b, c, e, f, n, p}, x] && IntegerQ[m/2]

Rubi steps \begin{align*} \text {integral}& = \frac {\text {Subst}\left (\int \frac {\sqrt {a+b x^2}}{x^2} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}+\frac {b \text {Subst}\left (\int \frac {1}{\sqrt {a+b x^2}} \, dx,x,\tan (e+f x)\right )}{f} \\ & = -\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f}+\frac {b \text {Subst}\left (\int \frac {1}{1-b x^2} \, dx,x,\frac {\tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f} \\ & = \frac {\sqrt {b} \text {arctanh}\left (\frac {\sqrt {b} \tan (e+f x)}{\sqrt {a+b \tan ^2(e+f x)}}\right )}{f}-\frac {\cot (e+f x) \sqrt {a+b \tan ^2(e+f x)}}{f} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 4 vs. order 3 in optimal.

Time = 2.60 (sec) , antiderivative size = 156, normalized size of antiderivative = 2.36 \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=-\frac {\left ((a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)-\sqrt {2} b \sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}} \operatorname {EllipticF}\left (\arcsin \left (\frac {\sqrt {\frac {(a+b+(a-b) \cos (2 (e+f x))) \csc ^2(e+f x)}{b}}}{\sqrt {2}}\right ),1\right )\right ) \tan (e+f x)}{\sqrt {2} f \sqrt {(a+b+(a-b) \cos (2 (e+f x))) \sec ^2(e+f x)}} \]

[In]

Integrate[Csc[e + f*x]^2*Sqrt[a + b*Tan[e + f*x]^2],x]

[Out]

-((((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2 - Sqrt[2]*b*Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc
[e + f*x]^2)/b]*EllipticF[ArcSin[Sqrt[((a + b + (a - b)*Cos[2*(e + f*x)])*Csc[e + f*x]^2)/b]/Sqrt[2]], 1])*Tan
[e + f*x])/(Sqrt[2]*f*Sqrt[(a + b + (a - b)*Cos[2*(e + f*x)])*Sec[e + f*x]^2]))

Maple [A] (verified)

Time = 0.09 (sec) , antiderivative size = 93, normalized size of antiderivative = 1.41

method result size
derivativedivides \(-\frac {\left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{f a \tan \left (f x +e \right )}+\frac {b \tan \left (f x +e \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}}{f a}+\frac {\sqrt {b}\, \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}\) \(93\)
default \(-\frac {\left (a +b \tan \left (f x +e \right )^{2}\right )^{\frac {3}{2}}}{f a \tan \left (f x +e \right )}+\frac {b \tan \left (f x +e \right ) \sqrt {a +b \tan \left (f x +e \right )^{2}}}{f a}+\frac {\sqrt {b}\, \ln \left (\sqrt {b}\, \tan \left (f x +e \right )+\sqrt {a +b \tan \left (f x +e \right )^{2}}\right )}{f}\) \(93\)

[In]

int(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x,method=_RETURNVERBOSE)

[Out]

-1/f/a/tan(f*x+e)*(a+b*tan(f*x+e)^2)^(3/2)+1/f*b/a*tan(f*x+e)*(a+b*tan(f*x+e)^2)^(1/2)+1/f*b^(1/2)*ln(b^(1/2)*
tan(f*x+e)+(a+b*tan(f*x+e)^2)^(1/2))

Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 152 vs. \(2 (58) = 116\).

Time = 0.35 (sec) , antiderivative size = 331, normalized size of antiderivative = 5.02 \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\left [\frac {\sqrt {b} \log \left (\frac {{\left (a^{2} - 8 \, a b + 8 \, b^{2}\right )} \cos \left (f x + e\right )^{4} + 8 \, {\left (a b - 2 \, b^{2}\right )} \cos \left (f x + e\right )^{2} + 4 \, {\left ({\left (a - 2 \, b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \sin \left (f x + e\right ) + 8 \, b^{2}}{\cos \left (f x + e\right )^{4}}\right ) \sin \left (f x + e\right ) - 4 \, \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{4 \, f \sin \left (f x + e\right )}, -\frac {\sqrt {-b} \arctan \left (\frac {{\left ({\left (a - 2 \, b\right )} \cos \left (f x + e\right )^{3} + 2 \, b \cos \left (f x + e\right )\right )} \sqrt {-b} \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}}}{2 \, {\left ({\left (a b - b^{2}\right )} \cos \left (f x + e\right )^{2} + b^{2}\right )} \sin \left (f x + e\right )}\right ) \sin \left (f x + e\right ) + 2 \, \sqrt {\frac {{\left (a - b\right )} \cos \left (f x + e\right )^{2} + b}{\cos \left (f x + e\right )^{2}}} \cos \left (f x + e\right )}{2 \, f \sin \left (f x + e\right )}\right ] \]

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="fricas")

[Out]

[1/4*(sqrt(b)*log(((a^2 - 8*a*b + 8*b^2)*cos(f*x + e)^4 + 8*(a*b - 2*b^2)*cos(f*x + e)^2 + 4*((a - 2*b)*cos(f*
x + e)^3 + 2*b*cos(f*x + e))*sqrt(b)*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*sin(f*x + e) + 8*b^2)/c
os(f*x + e)^4)*sin(f*x + e) - 4*sqrt(((a - b)*cos(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/(f*sin(f*x + e
)), -1/2*(sqrt(-b)*arctan(1/2*((a - 2*b)*cos(f*x + e)^3 + 2*b*cos(f*x + e))*sqrt(-b)*sqrt(((a - b)*cos(f*x + e
)^2 + b)/cos(f*x + e)^2)/(((a*b - b^2)*cos(f*x + e)^2 + b^2)*sin(f*x + e)))*sin(f*x + e) + 2*sqrt(((a - b)*cos
(f*x + e)^2 + b)/cos(f*x + e)^2)*cos(f*x + e))/(f*sin(f*x + e))]

Sympy [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \sqrt {a + b \tan ^{2}{\left (e + f x \right )}} \csc ^{2}{\left (e + f x \right )}\, dx \]

[In]

integrate(csc(f*x+e)**2*(a+b*tan(f*x+e)**2)**(1/2),x)

[Out]

Integral(sqrt(a + b*tan(e + f*x)**2)*csc(e + f*x)**2, x)

Maxima [A] (verification not implemented)

none

Time = 0.31 (sec) , antiderivative size = 47, normalized size of antiderivative = 0.71 \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\frac {\sqrt {b} \operatorname {arsinh}\left (\frac {b \tan \left (f x + e\right )}{\sqrt {a b}}\right ) - \frac {\sqrt {b \tan \left (f x + e\right )^{2} + a}}{\tan \left (f x + e\right )}}{f} \]

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="maxima")

[Out]

(sqrt(b)*arcsinh(b*tan(f*x + e)/sqrt(a*b)) - sqrt(b*tan(f*x + e)^2 + a)/tan(f*x + e))/f

Giac [F]

\[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int { \sqrt {b \tan \left (f x + e\right )^{2} + a} \csc \left (f x + e\right )^{2} \,d x } \]

[In]

integrate(csc(f*x+e)^2*(a+b*tan(f*x+e)^2)^(1/2),x, algorithm="giac")

[Out]

integrate(sqrt(b*tan(f*x + e)^2 + a)*csc(f*x + e)^2, x)

Mupad [F(-1)]

Timed out. \[ \int \csc ^2(e+f x) \sqrt {a+b \tan ^2(e+f x)} \, dx=\int \frac {\sqrt {b\,{\mathrm {tan}\left (e+f\,x\right )}^2+a}}{{\sin \left (e+f\,x\right )}^2} \,d x \]

[In]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^2,x)

[Out]

int((a + b*tan(e + f*x)^2)^(1/2)/sin(e + f*x)^2, x)